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OVERVIEW OF SURFACE RUPTURE IN THE HUMBOLDT REGION

Active faults and fault-related structures,
including folds, are located within the
onshore and offshore Cascadia subduction
margin (Figure 1; see Geologic Technical
Memo 1: Strong Ground Motion for
discussion of seismic sources). Offshore fault
and fold structures in the upper plate of the
subduction zone tend to be located within
the accretionary prism away from land for the
majority of the CSZ (McNeill et al., 1999).
Field et al. (1980), Clarke (1990), and Clarke
and Carver (1992) identified these structures
in the offshore sediments of the Eel River
basin. (Figure 2). More recently, high-
resolution multichannel seismic reflection
surveys and detailed bathymetry have
provided even better imaging of offshore
structures (Hill et al., 2020). Further
understanding of deformation of the Gorda
plate, which is a major contributing source to
current regional seismicity, came from
seismic reflection surveys beyond the
subduction margin (Gulick et al., 1998, 2001)
and analysis of seismicity within the plate
(Chaytor et al., 2004; Furlong & Schwartz,
2004; Rollins & Stein, 2010; Smith et al.,
1993; Stoddard, 1991; Wilson, 1989, 1993).

Figure 1 - Faults and folds within the offshore
accretionary prism of the entire Cascadia Subduction
Zone. This map does not include onshore faults and
folds which exist primarily in the southern part of the
subduction zone. The megathrust is farther offshore
in the Oregon — Canada portion of the margin. North
of the Blanco Fracture zone most structures are older
“Pliocene to early Pleistocene.” From McNeill et al.
(1998).
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Figure 2. Map showing locations of faults and folds
identified from multi- and single-channel deep- to
intermediate-depth seismic-reflection profiles and side-
scan sonar mosaics of the portion of the CSZ south of
Oregon (modified from Clarke, 1990). These fault
interpretations include those offsets interpreted in the
pre-Tertiary Franciscan basement and do not
necessarily reflect offset in the younger, overlying
Quaternary sediments. Note the continuation of faults
and folds onshore at the southern end near Humboldt
Bay. Black box is the approximate location of the
seismic profile in Figure 5.

The on-land faults and associated folds
are the extension of these offshore
accretionary prism faults. These are
features unique to this area in that most
fold and thrust structures associated
with subduction zones are located
offshore, including the majority of the
CSZ from Oregon through southwestern
Canada. (Figure 1 & 2). Previously, these
structures were mapped onland within
the terrestrial Eel River basin by Ogle
(1953) but a greater understanding of
these faults, with recognition they are
Quaternary—and in many cases
Holocene—active structures came from
paleoseismic studies by Woodward-
Clyde Consultants (1980) and later by
local academic studies and consultants’
investigations (Burke & Carver, 1992;
Carver, 1992; Carver & Burke, 1988;
Clarke & Carver, 1992; Hemphill-Haley &
Witter, 2006; Kelsey & Carver, 1988;
Nelson et al., 1995; Vadurro, 2006;
Valentine et al., 2012; Witter et al.,
2002). Summaries of seismic sources
include Woodward-Clyde Consultants
(1980), McCrory (2000) and Swan et al.
(2002).
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Faults and associated structures that may pose surface rupture hazards for the CalTrans HWY 101
project area include the Fickle Hill fault, a part of the Mad River fault zone (Carver et al., 1982; Smith,
1982; California Division of Mines and Geology, 1983; Vick, 1988; Vick and Carver, 1988; McLaughlin et
al., 2000). The fault is interpreted to be a southwest-vergent, northeast dipping thrust fault consisting of
numerous sub-parallel splays faults (McLaughlin et al., 2000). It is located at the north end of the
project area and traverses the Arcata city boundary along a northwest-southeast trending series of
scarps formed within marine terrace deposits (Figures 3 and 4). As the fault trends to the southeast it
exposes progressively older Quaternary-Tertiary nearshore marine deposits (Wildcat of Ogle (1953) and
Cretaceous-Jurassic Franciscan formation rocks in increasingly larger range-front scarps that form Fickle
Hill (Figure 5). To the southwest a series of faults exist which have been poorly documented. The
Bayside fault appears to be a possible subsidiary splay of the Fickle Hill fault (Figure 4). It appears to
displace late Pleistocene marine terrace deposits (Figure 5). Further to the southwest, the Bracut and
Freshwater faults project to Hwy 101 and displace Qtw deposits. An apparent lack of Qm marine terrace
deposits preclude assessment of late Pleistocene activity on these faults however they do not appear to
deform Holocene bay deposits. The USGS Quaternary fault and fold database (USGS, 2020) considers the
Fickle Hill fault to be active, the Bayside fault to be potentially active and the Bracut and Freshwater
faults to be poorly constrained in age of activity but Quaternary. They have a low probability of activity
that might affect the highway project.

Slip rates for the Fickle Hill fault are poorly constrained but are considered to be approximately 5 mm/yr
(USGS, 2020).

Most of the paleoseismic information for area faults within the fold and thrust belt comes from
investigations of the Little Salmon fault zone (LSFz) located to the south of Eureka and outside the
project area. Investigations of the LSFz were conducted to evaluate seismic hazards of the Humboldt Bay
Power Plant. This is the best information available on deformation style and activity of an active fold and
thrust fault in the region. We consider it an appropriate analog to the Fickle Hill fault although the Little
Salmon fault is likely more active.
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Figure 3. Alquist-Priolo Special Studies delineation of the Fickle Hill fault as understood in 1983 (California Division of Mines and Geology, 1983;
T. C. Smith, 1982). Further investigations (Carver, 1992; Clarke & Carver, 1992b; McCrory, 1996; G. S. Vick & Carver, 1988) suggest the fault
extends further to the SE and NW than shown here (see Figure 4).
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Figure 4. Faults listed as part of the Mad River fault zone that include the Fickle Hill fault and associated splays to the southwest that include
the Bayside, Bracut and Freshwater faults (from the USGS fault and fold database (https://www.usgs.gov/programs/earthquake-
hazards/faults). The Fickle Hill and Bayside faults are reported as latest Quaternary (<15,000 years) while the Bracut and Freshwater faults are
considered to have had Quaternary active (<1.6 million years) but there is no substantive evidence for younger activity.
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Figure 5. Geologic map of Arcata Bay, northern Humboldt
Bay (modified from McLaughlin et al. (2000). Several faults
transect the project portion of Hwy 101 including, from
north to south, the Fickle Hill, Bayside, Bracut and
Freshwater faults. . These fault all displace
Quaternary/Tertiary Wildcat formation (QTw) of Ogle
(1953). The Fickle Hill fault also displaces late Pleistocene
marine terrace deposits (Qm). The Bayside fault forms a
prominent scarp in QTw deposits and possibly OQm
terraces. The Bracut and Freshwater faults deform QTw
deposits but not Holocene bay muds adjacent to the
highway.

As stated in Page and Swan (2002, p. 8-2)
regarding the LSFz, “The style of faulting
and related surface deformation, width of
the deformed area, amount of surface
displacement, and relative contributions of
fault displacement and folding to the total
slip on a fault commonly change within
short distances along strike.” Surface
rupture may simply be along a single low

e a complex array of imbricate, stacked faults, back-thrusts and normal

faults as well as folds. End member complexity may include hundreds or thousands of closely spaced

conjugate faults that occur in a broad deformation zone (Page and Swan, 2002). Further, as noted by
Page and Swan (2002), thrust faults are often “blind” and do not reach the ground surface, although the

upper plate deformation includes faults and folds (Figure 6).

Investigation of the Little Salmon fault at College of the Redwoods by Witter et al. (2001) revealed a

complex, broad zone of faults and folds in the upper plate (Figure 7). A similar geometry of upper plate

deformation might be expected along the Fickle Hill and Bayside faults if they are involved in an

earthquake sufficient in size to create surface deformation.
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Figure 6. Potential upper plate structures that might be associated with slip along a basal thrust fault. Configurations and geometries of upper
plate faults and folds largely are dependent on changes in fault dip and depth. (From Swan, 2002, his Figure 8-1.)
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Figure 7. Diagrams of onshore surface faulting
within the hanging wall of splays of the Little
Salmon fault zone at the Humboldt Bay power
plant and College of the Redwoods. (From Swan,
2002, his Figure 8-3.)
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Figure 7. Diagrams of onshore surface faulting within the hanging wall of splays of the Little Salmon fault zone at the Humboldt Bay power plant
and College of the Redwoods. (From Swan, 2002, his Figure 8-3.)
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